
Repairing Functional Dependency Violations in
Distributed Data

Qing Chen, Zijing Tan⋆, Chu He, Chaofeng Sha, and Wei Wang

School of Computer Science,
Shanghai Key Laboratory of Data Science,

Fudan University, Shanghai, China
{13210240082,zjtan,12210240018,cfsha,weiwang1}@fudan.edu.cn

Abstract. One of the problems central to data consistency is data re-
pairing. Given a database D violating a set Σ of data dependencies as
data quality rules, it aims to modify D for a new relation D′ satisfying Σ.
When D is a centralized database, a host of methods have been provided
to address this problem. In practice, a database may be fragmented and
distributed to multiple sites, which is advocated by distributed systems
for better scalability and is readily supported by commercial system-
s. This paper makes a first effort to develop techniques for repairing
functional dependency violations in a horizontally partitioned database.
(1) Based on a message-passing distributed computing model and two
complexity measures (parallel time and data shipment) for distributed
algorithms, we study data repairing with equivalence classes in the dis-
tributed setting. We show that it is NP-complete to build equivalence
classes when the data is horizontally partitioned, and when we aim to
minimize either data shipment or parallel computation time. (2) De-
spite the intractability, we propose efficient distributed algorithms and
optimization techniques for data repairing based on equivalence class-
es. (3) We experimentally verify the effectiveness and efficiency of our
algorithms, using both real-life and synthetic data.

1 Introduction

Functional dependencies (FDs) are constraints that data values in a relation
are required to satisfy. In practice, however, we often encounter relations that
violate a predefined set of FDs and hence are inconsistent. Among techniques
for resolving FD violations, optimal repair computation is well studied. It aims
to repair an inconsistent relation by minimally modifying it w.r.t. some cost
measure, so as to get a new relation satisfying constraints (a.k.a. a repair of the
inconsistent relation) . Despite the intractability of optimal repair computation
for FD violations, several heuristic or approximation algorithms [2–5, 15] are
presented to repair a centralized database.

In this paper, we contend that it is necessary to develop algorithms for repair-
ing distributed data. (1) In practice, a relation is often fragmented and distribut-
ed across different machines, e.g., horizontal or vertical partition supported by

⋆ Corresponding Author

commercial systems. With this comes the need for repairing distributed data.
(2) Existing algorithms for optimal repair computation are typically quadratic,
or even cubic in the data size, and are hence too costly on real-life large data set.
Several optimizations are then provided to improve the scalability, while these
techniques necessarily have a negative impact on the repair quality. To overcome
the limitation of scalability, another way is to partition and distribute the large
data to multiple machines, so as to leverage more resources, as advocated by
distributed systems. Distributed repairing problem necessarily introduces new
challenges that we do not encounter in the centralized setting, and makes our
lives much harder. To our best knowledge, no such algorithms are in place yet.

Example 1: Fig. 1 gives an EMP relation D (Fig. 1(a)); each tuple specifies an
employee’s name, job (title, level, salary) and contact info (phn, street, city, zip).
The following functional dependencies (FDs) are defined on this relation:

φ1 : title, level → salary

φ2 : phn → street, zip

φ3 : zip → city

It is easy to see that D is inconsistent, since it violates given FDs. When D is
a centralized relation, we can employ existing repairing techniques to repair D.
We give one possible repair D′ (Fig. 1(b)), by modifying some attribute values.

Now suppose D is horizontally fragmented into three fragments (Fig. 1(c)),
and each fragment Di resides at site Si. Then to repair FD violations, data ship-
ments between different sites are generally required. We present some shipping
schedules for illustration. (1) The baseline approach is to collect all tuples at a
single site and employ a centralized data repairing algorithm. Even this simple
idea has some variants. For example, Collecting all tuples at site S1 is better than
collecting all tuples at S2, in terms of communication cost. (2) By analyzing the
FD set, we see that data modifications on an employee’s job are independent
of those on his contact info. In light of this, we can ship employees’ title, level
and salary attributes to one site and ship phn, street, city and zip attributes to
another site. Then, computations at these two sites can be done simultaneously,
and hence enjoy parallelism for better parallel computation time. (3) If we de-
cide not to ship data from/to site S3, we may introduce distinct new values to
attribute level, phn and zip of tuple t4 and t5. As will be seen in Sec. 3, this guar-
antees no FD violation. This approach favors communication cost and parallel
computation time, however, possibly at the cost of poor repair quality.

Putting these together, we know that strategies of data shipment have a
great impact on the communication cost, effectiveness of parallel computation,
and even the repair quality as well. �
Contributions. We make a first effort to investigate the problem of repairing
functional dependency violations in horizontally partitioned data.

(1) Based on a message-passing distributed computing model and two complex-
ity measures: parallel time and data shipment, for the analyses of distributed
algorithms (Section 3), we study the distributed version of equivalence class
technique, to develop distributed repairing algorithms with good repair quality
(Section 4). We show that it is NP-complete to build equivalence classes when

name title level salary phn street city zip

D

t1: Daisy VP 1 350K 021-11111111 Meiyuan SH 200070
t2: Jack staff 1 80K 021-11116666 Qingyun BJ 200070
t3: Bob staff 2 50K 021-11111111 Meiyuan SH 200070
t4: Joe staff 1 60K 025-22222222 Zhujiang NJ 210008
t5: Mike staff 1 80K 025-22221111 Hankou NJ 210008

(a) An EMP relation D.

name title level salary phn street city zip

D′

t1: Daisy VP 1 350K 021-11111111 Meiyuan SH 200070
t2: Jack staff 1 80K 021-11116666 Qingyun SH 200070
t3: Bob staff 2 50K 021-11111111 Meiyuan SH 200070
t4: Joe staff 1 80k 025-22222222 Zhujiang NJ 210008
t5: Mike staff 1 80K 025-22221111 Hankou NJ 210008

(b) One possible repair D′ of D.

name title level salary phn street city zip

D1
t1: Daisy VP 1 350K 021-11111111 Meiyuan SH 200070
t2: Jack staff 1 80K 021-11116666 Qingyun BJ 200070

name title level salary phn street city zip

D2 t3: Bob staff 2 50K 021-11111111 Meiyuan SH 200070

name title level salary phn street city zip

D3
t4: Joe staff 1 60K 025-22222222 Zhujiang NJ 210008
t5: Mike staff 1 80K 025-22221111 Hankou NJ 210008

(c) A horizontal partition of D.

Fig. 1. A relation D, one possible repair D′ and D’s horizontal partitions.

the data is horizontally partitioned, and when the complexity is measured by
either data shipment or parallel computation time.

(2) Despite the intractability, we present efficient distributed algorithms and
optimization techniques for data repairing based on equivalence classes (Sec-
tion 5). Our work is built upon an implementation of equivalence classes that
are distributed to multiple sites.

(3) Using both real-life and synthetic data, we conduct an extensive experimental
study to verify the effectiveness and efficiency of our algorithms (Section 6).

Related work. In the field of data consistency management, repair computa-
tion [2–6, 8, 9, 13, 15, 18–20] is the most well studied. There are different versions
of this problem, by considering various settings of constraint, repair primitive
and cost model, among other things. To our best knowledge, former works deal
with a centralized data set. This paper presents distributed algorithms for re-
pairing FD violations in distributed data. It is easy to see that the centralized
setting is a special case of the distributed one when only one site is available.
In addition, different complexity measures, e.g., data shipment or parallel time,
are employed to evaluate the performance of distributed algorithms and guide
the design of such algorithms. In light of this, the framework and techniques for
distributed repair computation are necessarily much more intricate.

[12] studies the problem of conditional FD violation detection in fragmented
and distributed relations, and [14] further provides algorithms for incrementally
detecting violations of conditional FDs in fragmented data. Note that violation
detection is to identify tuples violating FDs, while repairing aims at resolving
violations to obtain a consistent data set, and is hence more complicated. In-
deed, repairing one FD can break another, and simple heuristics could even fail
to terminate in the presence of interrelated FDs. In contrast, violation detection
can deal with FDs one by one and in any order. When it comes to distributed
computation, data repairing requires to balance the repair quality and the effi-
ciency of parallel computation, since there are possibly exponential number of
repairs. In contrast, FD validation has a deterministic result.

One solution for our problem is to employ existing frameworks, e.g., MapRe-
duce [10], and delegate most work to the system. However, a good solution for
distributed data repairing must exploit the nature of data repairing itself; ex-
isting systems fall short of these abilities. For example, recursive computation
is typically required in data repairing due to complicate interactions between
FDs, while MapReduce is generally not fit for this setting, which needs a series
of chained MapReduce invocations.

2 Preliminaries

In this section, we review some basic notations.

Data repair for a relation. We consider an instance D of relation schema
R(A1, . . . , Am). t[A] denotes the projection of tuple t onto attribute A, referred
to as a cell. We assume each tuple t is associated with a distinct identifier (id)
t.id, which is not subject to updates.

We consider functional dependency (FD) of the form X → A, where X ⊆
A1, . . . , Am. Any FD can be converted to this form by splitting right hand side
(RHS) attributes. For a given FD φ = X → A and an instance D, D satisfies φ,
denoted D |= φ, when there does not exist two tuples t1, t2 in D such that t1[B]
= t2[B] for all B ∈ X and t1[A] ̸= t2[A]. D satisfies a set Σ of FDs, denoted
D |= Σ, when D |= φ for ∀φ ∈ Σ.

When there exist FD violations in D w.r.t. Σ, we say D′ is a repair of D,
if (1) D′ is an instance of R, having the same tuple ids as D; and (2) D′ |= Σ.
Note that in this definition of repair, cell modification is used as the only repair
operation, similar to [3, 5, 15]. There are generally a large or even infinite number
of repairs. To this end, optimal repair computation aims to find one single repair
that minimizes some cost measure among all repairs. Recall that optimal repair
computation with cell modifications is proved to be NP-complete, even when the
cost of a repair is computed as the number of modified cells [15].

Example 2: Recall repair D′ presented in Fig. 1. When the number of modified
cells is taken as the repair cost, D′ has a cost of 2. �

For space limitation, in this paper we consider relation D that is horizontally
partitioned (fragmented) and distributed to multiple sites.

Horizontal partition [1, 17]. Relation D may be partitioned into a disjoint
set of fragments D1, . . . , Dn that share the same schema R as D. Specifically,
Di = σFi

(D), D =
∪

i∈[1,n] Di: (1) Fi is a predicate such that the selection

σFi(D) identifies fragment Di; and (2) D can be reconstructed by the union of
these fragments. W. l. o. g., we assume fragment Di is placed at site Si, i.e.,
one fragment at each site. We also extend tuple ids by adding site number as a
prefix; therefore, the site at which a tuple resides can be identified by its id.

Repairing FD violations in a horizontally fragmented relation. Given a
horizontally fragmented relation D =

∪
i∈[1,n] Di of schema R and an FD set Σ,

the problem of repairing D w.r.t. Σ is to find another fragmented relation D′ =∪
i∈[1,n] D

′
i of R, such that (1) D′

i has the same tuple ids as Di, possibly with

modified cell values; and (2) D′ |= Σ.

3 Analyses of distributed data repairing

In this section, we first present a message-passing computational model and
two complexity measures for distributed algorithms, and then investigate the
complexities of distributed data repairing based on the given model.

Model of distributed computation. We consider a pure message passing
model, which is flexible enough to express a large class of distributed algorithm-
s [16], and is fit for the problem of distributed data repairing. There are several
identical sites that can directly send arbitrary number of messages to each oth-
er, and those sites work together by message-passing and local computations.
Specifically, messages sent from a site Si to another site Sj only consist of the
local data available at Si. Local computations executed on Si utilize only data
at Si, i.e., local data and messages received at Si.

Complexity measures for distributed algorithms. We use two measures to
evaluate distributed algorithms: (a) parallel computation time, the time measur-
ing the completion time at different sites in parallel, and (b) total data shipment,
the size of total messages among sites during the computation.

It is worth mentioning that repair quality is not considered in the complexity
measures for distributed algorithms, while any meaningful distributed repairing
algorithms should produce a repair with good quality. Indeed, if only the efficien-
cy of distributed computation is concerned, we next present a simple distributed
repairing algorithm, referred to as NaiveLocal. NaiveLocal is optimal in data ship-
ment and when the relation is evenly fragmented and distributed to all sites, it is
also optimal in parallel computation time. NaiveLocal resolves all FD violations
locally, based on an adaption of the notion of core implicant [15]. Specifically, in
parallel at site Si, NaiveLocal first computes a set Z of attributes that intersects
with at least one left hand side (LHS) attribute of each FD φ ∈ Σ, and then
introduces a distinct new value to each attribute in Z for each tuple t in Di .
Here “distinct new value” implies a value not used in that attribute in D.

Example 3: {level, phn, zip } is a set of attributes that intersects with at least
one left hand side attribute of each FD given in Example 1. Then, a repair is
obtained by introducing new values to these attributes of all tuples. �

Fig. 2. Example equivalence class

To avoid values used in other fragments, we generally have to introduce mean-
ingless values in NaiveLocal, just as placeholders. Therefore, the repair produced
by NaiveLocal is of low quality and is not acceptable in practice. We stress that
an effective distributed repairing algorithm should be developed based on some
repairing technique with good repair quality. As will be seen shortly, this makes
the optimization of distributed algorithms much harder.

4 Distributed equivalence classes

Since it is beyond reach to find the optimal repair, there is no available “best”
repairing technique that we can follow in the distributed setting. In this section,
we first review the notion of equivalence class, which is an effective heuristic
repairing technique, and then discuss the complexities of its distributed version.

Equivalence class. Equivalence class (EC) is a technique used in data repair-
ing [2, 3, 5, 9, 14], for keeping track of cells having a same value in the generated
repair. We use the following notations: (1) an EC eA on attribute A is a set of
cells of the form ti[A]; (2) any cell c belongs to exactly one EC at any time,
denoted by ec(c); and (3) ξ denotes the set of all equivalence classes (ECs).

Given a relation D and a set Σ of FDs as input, ECs are built as follows.

(1) Initialization. Each cell c is in EC {c}, i.e., a singleton set containing itself.

(2) Merge equivalence classes: merging two ECs in ξ means replacing them by a
new EC that is equal to their union. Two distinct ECs eC , e′C are merged when
(i) there exist ti[C] ∈ eC , tj [C] ∈ e′C , such that ti[C] = tj [C], or (ii) there exists
X → C ∈ Σ, ti[C] ∈ eC , tj [C] ∈ e′C such that ∀D ∈ X, ec(ti[D]) = ec(tj [D]).
Note that merging ECs needs recursive computations and terminates when no
change to ξ is possible. Also note that building ECs reaches a deterministic result,
i.e., a unique fixpoint, in finite steps.

(3) Assign a target value to each EC. We get a repair of D by providing all cells
in EC eA with a same value, referred to as the target value of eA. This value is
typically set to minimize the total cost of value modifications from cell values in
eA to the target value.

Example 4: In Fig. 2(a), we show in dashed boxes ECs of D that have multiple
cells. We get a repair by ensuring all cells in the same EC have a same value.
Consider the EC that t1[city], t2[city], t3[city] belongs to; choosing “SH” as the
target value of this EC incurs one cell modification. �

Remark. As stated in former works, EC technique delays the choice of target
value as late as possible, to avoid poor local decisions. Also, EC avoids introduc-
ing values that are not meaningful, in contrast to NaiveLocal.

Equivalence classes on a fragmented relation. This paper considers a re-
lation that is fragmented and distributed to multiple sites. Then to repair FD

violations using EC, we need to develop distributed algorithms that can build
ECs upon a fragmented relation. We find the improvement in repair quality in-
troduced by EC comes at a cost: it is intractable to build ECs on horizontally
partitioned data, for the optimization of distributed algorithms.

Theorem 1: On a horizontally partitioned relation, it is NP-complete to build
ECs with either minimum data shipment or minimum parallel time. �

One may want to minimize data shipment and parallel computation time
at the same time. However, these two measures may be controversial with each
other, even in FD violation detection [12]. Since parallel time is typically the
dominating factor of algorithm design, in the rest of paper, we present algorithms
to optimize parallel time. Note that data shipment time is part of the parallel
time, and hence is considered in our algorithms as well.

5 Distributed data repairing based on equivalence class

We present algorithms for repairing FD violations in horizontally partitioned da-
ta, based on equivalence class (EC). In light of the intractability, our algorithms
are heuristic. We first provide an efficient implementation of EC to facilitate
the design of distributed algorithms, and then give repairing algorithms and
optimization techniques that distribute ECs to multiple sites for parallelism.

5.1 Implementation of equivalence class

We aim to give an implementation of EC that can effectively support basic
operations on EC, and that can be extended to handle ECs distributed to multiple
sites. To this end, we implement EC in Algorithm 1 by combining the disjoint-set
forest data structure [7] with the linked list technique. Each EC is denoted by a
tree, whose nodes are cells in this EC. Since an EC is associated with a specific
attribute, each cell c is denoted by the tuple id of c in the tree. Slightly abusing
notation, we use c.id to denote the related tuple id of c.

(1) Initialization (Procedure Init). For each cell c, we build as its initial EC a
single-node tree T [c] with five fields: parent, rank, HTab, next and tail. parent and
rank are initialized to be c.id and 0 respectively, to be used by the union-by-rank
heuristics [7]. HTab is a Hash table, keeping distinct values and their related
counts, i.e., the number of cells having that value in this EC. Initially, we insert
an entry (c, 1) into HTab, with c as the key field of the hash table; here c denotes
the value of cell c. next and tail are initialized to be NULL and c.id, respectively;
they link to the next cell following c and the last cell in the linked list.
Complexity. It takes O(|D| ×m) time for the initialization phase, where |D| is
the number of tuples, and m is the number of attributes involved in FDs.

Algorithm 1: BuildEC

Procedure Init /* initialize EC for each cell c */
1 foreach cell c do
2 T [c].parent:= c.id; T [c].rank:= 0; T [c].next:= NULL; T [c].tail:= c.id;
3 insert (c,1) into T [c].HTab;

Procedure Merge(c1, c2) /* merge two trees rooted at c1, c2 */
1 if T [c1].rank < T [c2].rank then T [c1].parent := c2.id ;
2 else if T [c1].rank > T [c2].rank then T [c2].parent := c1.id;
3 else T [c1].parent := c2.id; T [c2].rank := T [c2].rank + 1;

/* W. l. o. g., below we assume the tree rooted at c1 is attached to c2. */
4 foreach (v,cnt1) in T [c1].HTab do
5 if T [c2].HTab has an entry (v,cnt2) then update it as (v,cnt2 + cnt1);
6 else insert (v,cnt1) into T [c2].HTab;

7 T [T [c2].tail].next:= c1.id; T [c2].tail:= T [c1].tail;

Procedure Chase(T , T ′)/* When two ECs T , T ′ on D are merged, deal with
the possible mergence of ECs on C, via X → C (D∈X). */

1 initialize set l (resp. l′) ← all cells (tuple ids) in T (resp. T ′); L := {(l, l′)} ;
2 foreach B ∈ X\D do
3 List := L; L := ∅ ;
4 foreach (l, l′) ∈ List do /* join tuples from l, l′ on their ECs of B */
5 split it into set M :={(l1, l′1),(l2, l′2),. . . } such that l1, l2,. . . (resp. l′1,

l′2, . . .) are non-emtpy disjoint subsets of l (resp. l′), and ∀t ∈ li,
∀t′ ∈ l′i, Find(t[B]) = Find(t′[B]) ;

6 L := L ∪M ;

7 foreach (l, l′) ∈ L do
8 foreach t ∈ l, t′ ∈ l′ do /* t, t′ agree on all ECs of X*/
9 if Find(t[C]) ̸= Find(t′[C]) then Merge(Find(t[C]), F ind(t′[C]));

Function Find(c)/* find the root of the tree that T [c] belongs to */
1 if T [c].parent ̸= c.id then T [c].parent := Find(T [c].parent);
2 return T [c].parent;

(2) Merge equivalence classes (Procedure Merge). (i) Following [7], the union-
by-rank heuristics is applied to union two trees rooted at c1 and c2 (lines 1-3).
Intuitively, it aims to always attach the tree with a smaller rank to the root
of the tree with a larger rank. When two trees have equal rank, we arbitrarily
choose one of them as the parent and increase its rank by 1. (ii) We maintain
HTab tables when merging two ECs (lines 4-6). (iii) Finally, we maintain the
linked list by attaching the list starting from c1 to the end of the list starting
from c2 (assuming the tree rooted at c1 is attached to c2). Note that we maintain
fields parent and next for all cells, but maintain other fields only for the root cell.

Complexity. It takes O(1) for (i) and (iii), and at most O(max(i, j)) for (ii),
where i, j is the number of entries in T [c1].HTab and T [c2].HTab respectively.

(3) When to merge ECs? As stated in Section 4, there are two cases: (i) two ECs

are merged when having same values in their HTab; or (ii) the mergence of ECs
on attribute D may lead to mergence of ECs on attribute C, when there exists
an FD X → C and D ∈ X. Case (i) requires similar operations on HTab as

(2)(ii). Case (ii) is much more subtle, since it involves FD reasonings. Procedure
Chase is provided for this case. Chase first enumerates all cells (ids) in given ECs

(line 1); this can be efficiently done by following the next field from the root
cell. Chase then joins tuples (ids) from two ECs based on their ECs on attribute
B ∈ X\D one by one (lines 2-6). This requires to find the EC that a given tuple
belongs to (Procedure Find). Here, Find uses the path compression heuristics [7]
to shorten path to the root. Finally, Merge is called for each pair of t, t′ that
agrees on all ECs of X, and that does not agree on ECs of C (lines 7-9).
Complexity. We study the complexity of Chase. (a) It takes linear time in the
number of cells for line 1. (b) Hash join of set l with i tuples and set l′ with j
tuples on |X|-1 attributes takes at most (|X|−1)(i+j) Find operations. Note that
k find operations on a tree of N nodes, can be performed on a disjoint-set forest
with “union by rank” and “path compression” heuristics in its worst-case time
O(kα(N)) [7]. Here α(N) is the inverse Ackermann function, which is incredibly
slowly growing and is less than 5 for all remotely practical values of N . Hence,
α(N) can be regarded as a constant. (c) It requires in its worst case i + j Find
and i× j Merge for lines 7-9, but quite rare in practice.

Example 5: Consider the EC on attribute city that t1[city], t2[city], t3[city] be-
longs to. The data structure of this EC is shown in Fig. 2(b), with valid fields,
i.e., parent, next for all cells, and rank, tail, HTab for the root cell. �

5.2 Distributed equivalence class for data repairing

We come to the distributed setting and start with the baseline algorithm, referred
to as DisBuild. In DisBuild, at each site partial ECs are built on the fragmented
relation, upon which global ECs are then built at some coordinator sites.

DisBuild follows the distributed computation model stated in Section 3. To
simplify presentation, we use remote function as a wrapper of some message
passings. At site Si, algorithm may call a remote function of the form Sj :
f(p1, . . . , pn), to be executed at another site Sj . Technically, to do so, algorithm
needs to send messages to site Sj by encoding f(p1, . . . , pn), and receives answers
via messages from Sj . There are two basic remote functions supported by all
sites. (1) r list(root) is to list all cells in the tree (EC) rooted at root; and (2)
r find(cell) is to find the EC that cell belongs to. Since root, cell are tuple ids,
the site at which remote function is to be conducted, can be readily identified.

Algorithm. Algorithm DisBuild takes as input a set Σ of FDs and partial re-
lation Di = σFi(D) at site Si. It finds a repair of D using ECs in four stages.
Without loss of generality, we suppose data are evenly distributed to all sites.

Stage 1: ECs are built on Di at site Si in parallel, by following Algorithm 1.

Stage 2: DisBuild merges ECs on the same attribute at different sites when
they have same values in their HTab tables. To do so, (1) DisBuild heuristically
picks a coordinator site for each attribute A involved in Σ, denoted by SA. If
possible (the number of sites is larger than the number of attributes), DisBuild
assigns a coordinator to each attribute. Otherwise, DisBuild prefers to assign a
coordinator to each of LHS attributes of FDs, and shares coordinators among

attributes when necessary. (2) Site Si identifies ECs at Si on attribute A. For
each such EC tree T rooted at cell c, Si sends (c.id, T [c].HTab) to SA. (3) For
each received (id, table) at SA, DisBuild builds as an EC a single-node tree T [c],
with (id, 0, table, NULL, id) as values for fields (parent, rank, HTab, next, tail),
respectively. We refer to ECs built in Stage 2 at SA as global ECs, while refer
to ECs built in Stage 1 as local ECs. Intuitively, DisBuild builds global ECs upon
roots of local ECs. (4) DisBuild identifies global ECs with same values in HTab at
SA, and merges them following Merge in Algorithm 1.

Data shipment. For each EC, only its root cell (id) is shipped. The number of

entries of all HTab tables shipped from site Si to coordinator SA equals the
number of distinct t[A] values in fragment Di.

Stage 3: Triggered by mergence of global ECs at SA in Stage 2 and iteratively
in Stage 3, DisBuild conducts EC computations for all FDs of the form X→C
(A∈X) at SA, and informs coordinator SC (by message passing) to merge its
global ECs on C when required. This repeats until no change happens at any
site. To do so, DisBuild extends Chase in Algorithm 1, by obtaining data via
message passings (including remote functions). Specifically, (1) To fetch all cells
in a global EC rooted at r, DisBuild first at the corresponding coordinator lists
all cells in this global EC, and then for each listed cell c, calls remote function
r list(c) to list all cells in the local EC rooted at c. (2) To find the EC that cell
c belongs to, DisBuild first calls remote function r find(c) to fetch the root r of
the local EC containing c, and then at the coordinator identifies the root of the
global EC containing r. (3) Note that all cells in a local EC are at the same site,
so are related tuples. Therefore, DisBuild introduces a single message protocol to
fetch ECs that ti[B] belongs to, for all tuples ti containing cells in a local EC on
A and for all attributes B∈{C}∪X\A, when handling X→C (A∈X). Although
this may incur more data shipment compared to the approach that fetches data
when necessary, this avoids the overhead of multiple rounds of communication
and can be partly done in parallel with Chase.

Data shipment. All messages consist of only tuple ids. For a local EC with k cells
and an FD X → C, it requires to fetch at most k × |X| ids, with a single round
of communication. Note that for an FD A → C, i.e., FD with only one LHS
attribute, all tuples in the same local EC on A must be in the same local EC on
C; in this case, only one id is required to be obtained for C.

Stage 4: For each global EC, DisBuild identifies its target value based on HTab
of the root cell, and in this global EC, identifies local ECs with value(s) other
than the target value by their HTab collected in Stage 2. DisBuild informs sites
containing those ECs to modify cell values accordingly, to produce a repair of D.

Data Shipment. We need to ship one value for each local EC with value(s) dif-
ferent from the target value.

Example 6: (1) In Fig. 3(a), we show local ECs at site S1, S3 and global ECs on
level after Stage 2. (2) For EC computation via FD title, level → salary in Stage
3, DisBuild lists all cells in the global EC, and identifies ECs that ti[B] belongs
to, for i∈[1, 2, 4, 5] and B ∈ {title, salary}, by local computations and message
passings. This causes mergence of global ECs at the coordinator site for salary,

Fig. 3. Example of DisBuild

shown in Fig. 3(b). Here we suppose t4 is the root of the local EC containing
t4, t5 at site S3. (3) Finally, a target value is selected for this EC in Stage 4.
Suppose 80K is the target value, site S3 is required to be informed of this. �
Remark. (1) DisBuild distributes to multiple sites computations for (a) different
fragments in Stage 1, (b) different attributes in Stage 2 and 4, and (c) FDs with
different LHS attributes in Stage 3. (2) DisBuild is a distributed implementa-
tion of data repairing technique with EC. Therefore, DisBuild is guaranteed to
terminate in finite steps and correctly find a repair.

5.3 Optimization strategies

We next introduce two optimization strategies.

Fully distributed mode. A limitation of DisBuild is that it requires to visit co-
ordinators for most operations. Alternatively, we present another approach that
fully distributes computations to all sites, denoted as FullDis. FullDis is based on
fully distributed ECs: upon mergence of ECs, related fields of ECs are modified
(excluding HTab) following Merge of Algorithm 1, with trivial data shipment.
After that, some cell may have cell at other site as its parent (similarly for tail
and next); this enables FullDis to tune basic operations. Specifically, by follow-
ing parent, when r find(c) executed at site Si reaches a cell c′ at other site,
say Sj , FullDis in turn calls r find(c′) at Sj ; this continues until reaching the
site containing the root of EC that c belongs to. In this way, FullDis distributes
computations to more sites other than coordinators. Better, the path compres-
sion heuristics in Find helps reduce the number of sites to be visited. Similarly,
r list(r) is conducted by following next, possibly through multiple sites.

Example 7: As shown in Fig. 4(a), ECs on level at site S1, S3 are merged to
form a distributed EC rooted at t1. One can find the root of this EC and list cells
in this EC by following fields parent, next, respectively. �

More specifically, FullDis is also conducted in four stages, but differs from
DisBuild in Stages 2-4, as follows.
Stage 2: When there are abundant sites, FullDis may employ multiple coordi-
nators for attribute A, whose values are from an ordered domain. Given k as the
number of coordinators for A, FullDis works as follows. (1) As a preprocessing
step, FullDis mines some Di for values v1 < v2 < · · · < vk−1 as boundary values
to partition the domain of A. It then identifies k coordinators SA(i)(i ∈ [1, k]),
and informs all sites of boundary values and coordinators. (2) At site Sj in par-
allel, for each EC on A rooted at cell r, FullDis ships r.id and σG(i)(T [r].HTab)

Fig. 4. Example of optimizations

to SA(i) when σG(i)(T [r].HTab) is not empty. Here σG(i)(T [r].HTab) is a hori-
zontally partitioned fragment of T [r].HTab: (v,cnt)∈ σG(i)(T [r].HTab) if (i) i=1
and v < v1, or (ii) i = k and v ≥ vk−1, or (iii) i ∈ [2, k − 1], and vi−1 ≤ v < vi.
Note that roots of some ECs may be shipped to multiple coordinators, but each
with disjoint partial HTab tables. (3) Coordinators in parallel, merge collected
ECs based on HTab values, using the aforementioned distributed ECs.

Stage 3: FullDis employs sites other than coordinators, for EC computations via
FD. FullDis can delegate such tasks to any idle site, by sending it a message with
root ids of ECs that are merged. This site then identifies involved FDs based on
LHS attributes, and fetches required data by visiting the distributed ECs.

Stage 4: FullDis employs more sites to determine target values for ECs. (1) Each
site Si in parallel identifies ECs at Si whose root cell r is at other site, and ships
HTab table to the site at which r resides (HTab tables of ECs with the same
root are firstly merged locally). Recall that FullDis does not modify HTab when
merging ECs in Stage 2 and 3. (2) For ECs rooted at Si, Si determines target
values for them by considering local HTab and HTab received from other sites.

Remark. As verified by our experiments (Section 6), FullDis allows a higher
degree of parallelism than DisBuild in Stages 2-4. Indeed, even when we can-
not afford multiple coordinators for one attribute in Stage 2, distributing EC

computations to more sites in Stage 3 is proved to be very effective by itself.

Build EC following dependency graph. Former approaches are eager in
that they perform mergence of ECs via FD as early as possible. This maximizes
parallelism but may incur unnecessary computation in certain cases. Consider
Example 1. t2 from site S1 and t4, t5 from site S3 will be put into the same EC

on salary via FD title, level → salary. However, this is doable only when t2, t4, t5
are already in the same EC on title (level); the aforementioned EC computation
via FD may fail if it is conducted before ECs on title or level are merged. This
false negative is possible because DisBuild deals with ECs on title and level at
different sites in parallel. Although DisBuild will successfully conduct mergence
of ECs eventually, we see it may incur unnecessary computations in the process.

We present an approach that may avoid some unnecessary computations, de-
noted as SerBuild. SerBuild serializes some EC computations via FD, by following
the dependency graph. As a preprocessing step, SerBuild builds dependency graph
at a selected master site Sm. In the graph, (a) each attribute or (b) each set of
attributes that are LHS attributes of a same FD, is treated as a (composite)
vertex, and there is an edge from LHS attribute(s) to RHS attribute for each

FD, and an edge from attribute A to each composite vertex containing A. As an
example, we show the dependency graph for Example 1 in Fig. 4(b).

At master site Sm, SerBuild identifies edges (FDs) that start from composite
vertex, and that are not part of strongly connected components in linear time [7].
SerBuild differs from DisBuild in Stage 3 when handling these FDs. Specifically,
for each of these FDs in the form of X → A, SerBuild performs mergence of ECs
on A via this FD only after mergence of all attributes B ∈ X. To do so, master
site Sm communicates with coordinators sites, to monitor the progress of EC

computation at those sites, and to guide some sites for the next step.

Remark. Through experiments (Section 6), we find SerBuild avoids some un-
necessary computations, without affecting parallelism.

6 Experimental study

Experimental setting. We use 8 machines (sites), each with 2.53GHz Intel
Xeon X3440 CPU, 4GB memory and Windows 7, connected by a local area
network. Each experiment was run 5 times and the average is reported here.

As noted earlier, our algorithms provide a distributed implementation of EC
technique and produce the same repair as the centralized approach. Since the
effectiveness of EC in terms of repair quality is well demonstrated by former
works, we omit the results concerning repair quality, e.g., precision, here.
Data. (1) Real-life HOSP data is taken from US Department of Health & Human
Services. We obtain a relation having more than 200K tuples with 16 attributes
(https:// data.medicare.gov/data/hospital-compare) and design 8 FDs for it.
(2) Synthetic Person data combines the schema of Fig. 1 with that of the UIS
Database generator [3, 21]. We create a relation with 10 attributes, and populate
it using a modified version of the UIS Database generator.
Algorithms.We implement the following algorithms in Java: distributed repair-
ing algorithm DisBuild, and optimizations FullDis and SerBuild. For comparison,
we also implement a naive approach Naive, which collects all tuples at a single
coordinator site, and then repairs data using centralized equivalence class.

All experiments are controlled by two parameters: (a) |D|: the number of
tuples; and (b) |S|: the number of (fragments) sites. We uniformly distribute |D|
tuples to |S| sites in all experiments.
Exp-1.Using HOSP data, we compare the performance of DisBuild against Naive.
Varying |S|. By fixing |D| = 200K, varying |S| from 2 to 8, Fig. 5(a) shows
results of total data shipment. This comparison favors Naive, since shipments in
DisBuild are distributed among sites. We see the following. (1) Data shipments
of all algorithms increase with larger |S|, as expected. (2) DisBuild consistently
outperforms Naive. As stated earlier, most shipments in DisBuild consist of only
tuple ids, and for the most expensive part of shipment conducted in Stage 2,
DisBuild ships only distinct values in each fragment.

Fig. 5(b) shows the parallel time of all algorithms. DisBuild consistently out-
performs Naive, and the gap increases as |S| increases; it takes less time for
DisBuild but more time for Naive with larger |S|. Note that Naive always takes

 0
 5

 10
 15
 20
 25
 30

2 4 6 8
D

at
a

S
hi

pm
en

t(
M

B
.)

Number of Sites

Naive
DisBuild

(a) shipment vs |S|

 0
 10
 20
 30
 40
 50
 60
 70

2 4 6 8

T
im

e(
se

c.
)

Number of Sites

Naive
DisBuild

(b) time vs |S|

 0
 5

 10
 15
 20
 25
 30
 35
 40

2 4 6 8

T
im

e(
S

ec
.)

Number of Sites

Total Time
Stage 1

Other

(c) time analysis

 0
 5

 10
 15
 20
 25
 30

 12 14 16 18 20

D
at

a
S

hi
pm

en
t(

M
B

.)

Number of Tuples(10K)

Naive
DisBuild

(d) shipment vs |D|

 0
 10
 20
 30
 40
 50
 60
 70

 12 14 16 18 20

T
im

e(
se

c.
)

Number of Tuples (10K)

Naive
DisBuild

(e) time vs |D|

 0
 100
 200
 300
 400
 500
 600

2 4 6 8
T

im
e(

se
c.

)

Number of Sites

Naive
DisBuild

(f) time vs |S|

 0

 200

 400

 600

 800

 1000

 8 12 16 20 24

T
im

e(
se

c.
)

Number of Tuples (100K)

Naive
DisBuild

(g) time vs |D|

 0
 100
 200
 300
 400
 500
 600
 700

5 7 9 11

T
im

e(
se

c.
)

Number of FDs

Naive
DisBuild

(h) time vs |Σ|

 0

 5

 10

 15

 20

5 6 7 8

T
im

e(
se

c.
)

Number of FDs

DisBuild
FullDis

(i) time vs |Σ|

 0
 5

 10
 15
 20
 25
 30

 8 12 16 20 24

T
im

e(
se

c.
)

Number of Tuples (100K)

DisBuild
FullDis

(j) time vs |D|

 0

 20

 40

 60

 80

 100

8 12 16 20 24D
at

a
S

hi
pm

en
t(

10
K

B
.)

Number of Tuples(100K)

DisBuild
SerBuild

(k) shipment vs |D|

 0

 50

 100

 150

 200

8 12 16 20 24

T
im

e(
S

ec
.)

Number of Tuples(100K)

TT of DisBuild
TT of SerBuild
PT of DisBuild
PT of SerBuild

(l) time vs |D|
Fig. 5. Experimental Results

the same time for EC computation at its coordinator, while more time for data
shipment with the increase of |S|. To further analyze the results of DisBuild, in
Fig. 5(c), we decompose its time into two parts: time for Stage 1, and time for
other stages. We see that the former time decreases while the latter one increases
as |S| increases, as expected. Specifically, DisBuild leverages more sites to signif-
icantly reduce the time for Stage 1 from 32 Sec. to 6 Sec., and the time for other
stages slightly increases from 4 Seconds to 6 Seconds.

Varying |D|. We then evaluate the scalability of algorithms with |D|. By fixing
|S| = 8, varying |D| from 120K to 200K in 20k increment, Fig. 5(d), 5(e) show
the total data shipment and parallel time. As expected, the required shipments
and times of all algorithms increase as the data size increases. Compared to
Naive, DisBuild scales better with |D|, especially in the parallel time.

Exp-2. Using Person data, we compare DisBuild against Naive on large data sets,
in terms of parallel time. We use one more parameter |Σ| to vary the number
of FDs ∈ Σ. We set |S| = 8, |D| = 1,600K, |Σ| = 7 by default, and vary one
parameter in each of Fig. 5(f), 5(g) and 5(h), respectively.

Varying |S|. By varying |S| from 2 to 8, Fig. 5(f) confirms our observations on
HOSP data. DisBuild outperforms Naive in reducing parallel time by 48% to 85%,
as |S| increases. We find in DisBuild, the time for Stage 1 decreases from 301
Sec. to 68 Sec., and the time for other stages slightly increases from 8 Sec. to 14
Sec. (not shown in figures). The time for Stage 1 remains the dominant factor,
and can be effectively optimized with the increase of |S|.
Varying |D|. Fig. 5(g) shows experimental results when |D| increases from 800k
to 2,400k, in 400k increment. We see that DisBuild scales well with |D|: its parallel
time increases from 38 Sec. to 135 Sec., as |D| triples.

Varying |Σ|. We increase |Σ| from 5 to 11, and report results in Fig. 5(h).
As expected, the increase of |Σ| has a negative impact on the running time.
Compared to Naive, DisBuild scales better. This is because DisBuild distributes
computations concerning Σ to multiple sites, both in Stage 1 and in Stage 3.

Exp-3. We compare FullDis against DisBuild. We use 8 machines and get a
vertically fragmented Person data with 7 attributes. We assign a coordinator to
each attribute, and use one additional machine as a worker site, to be used by
FullDis in Stage 3 for EC computation via FD. In this experiment, we report
parallel time of Stages 2-4; FullDis differs from DisBuild in these states.

Varying |Σ|. We fix |D| = 1,600K, increase |Σ| from 5 to 8, and report results
in Fig. 5(i). We see that FullDis outperforms DisBuild, and the gap widens when
|Σ| increases. Indeed, the time of FullDis is about [73%, 90%] of the time taken
by DisBuild. With the increase of |Σ|, we find several sites become bottlenecks in
DisBuild: each of these sites is used as the coordinator for an attribute that is LHS
attribute of multiple FDs. These sites are required to conduct EC computations
for all related FDs in DisBuild, and hence take longer time than other sites.
FullDis avoids this by distributing such computations to other idle sites, e.g., the
worker site, or sites as coordinators only for RHS attributes of FDs. Combining
these with the fully distributed ECs, FullDis further improves parallelism.

Varying |D|. Fig. 5(j) shows experimental results when |D| increases from 800k
to 2,400k and |Σ| = 8. FullDis is faster than DisBuild and scales well with |D|.
Exp-4. We compare SerBuild against DisBuild using Person, by fixing |S| = 8,
|Σ| = 7 and varying |D| from 800k to 2,400k. Among the 7 FDs, two of them
have multiple LHS attributes. We report results of Stage 3, since SerBuild differs
from DisBuild in this stage. Fig. 5(k) shows that SerBuild requires less shipment
compared to DisBuild. All shipments in Stage 3 are conducted to fetch data for EC
computation via FD; this implies that SerBuild avoids some of the unnecessary
computations. Also note that there are small data shipments in Stage 3, since
only tuple ids are shipped. Fig. 5(l) shows parallel time (PT), and in addition,
shows total computation time (TT), which is the sum of computation times at all
sites. We find SerBuild has similar PT as DisBuild, and more evidently, improves
TT by 5% to 8%. SerBuild avoids unnecessary computations at some sites, and
those sites proceed to other computations, without affecting parallelism.

7 Conclusions

We have studied the complexity of distributed data repairing (with equiva-
lence class), presented algorithms and optimizations for distributed repairing
based on EC, and experimentally verified our approach. We are currently exper-
imenting with more real-life datasets, extending algorithms to support vertically
partitioned relations, developing distributed repairing techniques for more con-
straints, e.g., conditional functional dependencies [11].

Acknowledgements. This paper is supported by Shanghai technology innova-
tion project 14511107403.

References

1. S. Abiteboul, R. Hull, V. Vianu. Foundations of databases. Addison-Wesley, 1995.
2. P. Bohannon, W. Fan, M. Flaster, R. Rastogi. A cost based model and effective

heuristic for repairing constraints by value modification. SIGMOD, 2005.
3. G. Beskales, I. Ilyas, L. Golab, A. Galiullin. Sampling from repairs of conditional

functional dependency violations. VLDB Journal, 23(1):103-128, 2014.
4. G. Beskales, I. Ilyas, L. Golab, A. Galiullin. On the relative trust between incon-

sistent data and inaccurate constraints. ICDE, 2013.
5. G. Cong, W. Fan, F. Geerts, X. Jia, S. Ma. Improving data quality: Consistency

and accuracy. VLDB, 2007.
6. X. Chu, I. Ilyas, P. Papotti. Holistic data cleaning: Putting violations into context.

ICDE, 2013.
7. T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introduction to Algorithms. MIT

Press, 2009.
8. F. Chiang, R. Miller. A unified model for data and constraint repair. ICDE, 2011.
9. M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. Ilyas, M. Ouzzani, N.

Tang. NADEEF: a commodity data cleaning system. SIGMOD, 2013.
10. J. Dean, S. Ghemawat. MapReduce: Simplified data processing on large clusters.

OSDI, 2004.
11. W. Fan, F. Geerts, X. Jia, A. Kementsietsidis. Conditional functional dependencies

for capturing data inconsistencies. TODS, 33(2), 2008.
12. W. Fan, F. Geerts, S. Ma, H. Muller. Detecting inconsistencies in distributed data.

ICDE, 2010.
13. W. Fan, J. Li, S. Ma, N. Tang, W. Yu. Towards certain fixes with editing rules

and master data. VLDB Journal, 21(2):213-238, 2012.
14. W. Fan, J. Li, N. Tang, W. Yu. Incremental detection of inconsistencies in dis-

tributed data. TKDE, 26(6):1367-1383, 2014.
15. S. Kolahi, L. Lakshmanan. On approximating optimum repairs for functional de-

pendency violations. ICDT, 2009.
16. N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
17. M. Ozsu, P. Valduriez. Principles of Distributed Database Systems (2nd edition).

Prentice-Hall, 1999.
18. S. Song, H. Cheng, J. Yu, L. Chen. Repairing vertex labels under neighborhood

constraints. VLDB, 2014.
19. J. Wang, N. Tang. Towards dependable data repairing with fixing rules. SIGMOD,

2014.
20. M. Yakout, A. Elmagarmid, J. Neville, M. Ouzzani, I. Ilyas. Guided data repair.

VLDB, 2011.
21. UIS data generator, http://www.cs.utexas.edu/users/ml/riddle/data.html.

